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Abstract. This paper presents a comprehensive framework for run-time self-
checking of logical agents, by means of temporal axioms to be dynamically
checked. These axioms are specified by using an agent-oriented interval tem-
poral logic defined to this purpose. We define syntax, semantics and pragmatics
for this new logic, specifically tailored for application to agents. In the resulting
framework, we encompass and extend our past work.

1 Introduction

Agent systems are more and more widely used in real-world applications: therefore, the
issue of verification is becoming increasingly important, as discussed for instance in [1]
(and in the many references therein).

According to [2], given representations of an agent, an environment, and a task we
wish the agent to carry out in this environment, verification tries to determine whether
the agent will carry out the task successfully. In particular, given the specification of
agent Ag , environment Env and property ψ, the “verification problem” can be defined
as the decision problem related to establishing whether ψ is reached in every run of
Ag . As discussed in [2], the complexity of ψ will affect the complexity of this problem.
As [2] points out, ψ can be either an achievement goal, i.e., a desirable state the the
agent wants to reach, or a maintainance goal, related to undesirable states that the agent
wishes to avoid. In other words, and taking time into account, two kinds of temporal
properties can be distinguished: liveness properties concern the progress that an agent
makes and express that a (good) state eventually will be reached; and safety properties
express that some (bad) state will never be entered.

Static verification of agent programs and systems (see Section 4), i.e., verification
performed prior to agent activation, can be accomplished through model-checking tech-
niques [3], abstract interpretation [4] or theorem proving. This paper presents instead
an approach to dynamic (run-time) verification of agent systems. Our motivation is that
agents behavior is affected by their interaction with the external world, so in most prac-
tical cases the actual arrival order of events and thus the actual agent evolution is un-
foreseeable. Often, the set of possible events is so large that computing all combinations
would result in a combinatorial explosion, thus making “a priori” (static) verification
techniques only partially applicable. Moreover, the set of in-coming events may be only
partially known in advance, at least if one admits that agents should learn, in the sense
of enlarging over time their set of behaviors.

Therefore, we believe that static verification should be integrated with dynamic self-
checking, basically aimed at detecting violations of wished-for properties. A crucial



point of our proposal is that, in case of violation, agents should try to restore an accept-
able or desired state of affairs by means of run-time self-repair. Even in case desired
properties are fulfilled, by examining relevant parameters of its own activities an agent
might apply forms of self-improvement so as to perform better in the future.

Self-repair and improvement are seen in the direction of overcoming or at least al-
leviating “brittleness”, that can be intended as the propensity of an agent to perform
poorly or fail in the face of circumstances not explicitly considered by the agent’s de-
signer. In opposition to brittleness, [5] mentions Versatility as the ability of being trained
to perform previously unanticipated tasks. [6,7] introduce the concept of Perturbation
Tolerance, where a perturbation is any unanticipated change, either in the world or
in the system itself, that impacts an agents performance. To achieve Perturbation Tol-
erance, [6,7] define a time-based active logic and a Metacognitive Loop (MCL), that
involves a system monitoring, reasoning and meta-reasoning about and if necessary al-
tering its own behavior. [7] presents a number of domain-specific implementations of
MCL, to demonstrate that MCL is a general-purpose methodology for building flexible
(non-brittle) programs in specific domains, and discusses the perspective of domain-
independent implementation of MCL.

We agree with [6] on the fact that “self-consciousness” and self-modification are key
aspects for building flexible and adaptable agents. In fact, we propose a comprehensive
framework for checking the agent behavior correctness during the agent activity, aimed
at self-repair and improvement (within this framework we encompass and extend pieces
of our previous work [8,9,10]). We define an interval temporal logic devised to this aim,
and particularly tailored to the agent realm, called A-ILTL (for Agent-oriented Interval
Temporal Logic), for which we provide a full semantics. Based on A-ILTL formulas,
we introduce two new kinds of constraints to be added to agent programs and to be
checked dynamically, that we call, respectively, A-ILTL Rules and A-ILTL Expressions.
These constraints are meant to be automatically attempted at a certain (customizable)
frequency, where priorities can be established among properties to be verified. A-ILTL
rules and expressions, also according to what has happened and to what is supposed to
happen or not to happen in the future, define properties that should hold and what should
be done if they are violated or if they are fulfilled, so that an agent can repair/improve
its own behavior.

Our approach is very general, and thus could be adopted in several logic agent-
oriented languages and formalisms. In particular, one such language is DALI [11,12],
which is an agent-oriented extension to prolog that we have defined and developed in
previous work (cf. [13] for a comprehensive list of references about DALI, while the
DALI interpreter is publicly available at [14]). We have experimented with DALI in a
variety of applications (see, e.g., [15,16,17,18]), from which we have drawn experience
and inspiration for the present work. We have added A-ILTL rules and expressions to
DALI, where we also have prototypically implemented the approach. DALI is in itself
an ‘active’ agent-oriented logic programming language with certain features, in particu-
lar the “internal events”, going towards flexible self-adaptability. In fact, internal events
allow a DALI agent to react to internal conditions whenever they occur. By means of
internal events DALI agents can take initiatives, adopt goals and intentions, execute
plans and manipulate and revise their knowledge on their own accord, independently of



the environment. Therefore, the new features fit gracefully in this setting. In Section 5
we will show by means of a small but complete sample application how A-ILTL rules
and expressions can be exploited in a DALI agent.

It can be useful to remark that in the proposed framework agent’s state and behavior
is checked (and possibly corrected, improved or re-arranged) during agent’s functioning
not by means of rules as usually intended, but by means of special constraints which
are checked automatically with frequencies and priorities customizable according to
the specific requirements of the application at hand. This helps to alleviate the problem
mentioned in [19] that in rule-based systems “every item which is added to memory
via a rule must be maintained by other rules . . . ” thus unavoidably resulting, in their
opinion, in brittleness of these system. Brittleness and inflexibility are in fact often
attributed to rule-based systems due to their supposed over-commitment to particular
courses of action, that our approach intends to loosen.

The paper is structured as follows. In Section 2 we provide the reader with some
notions concerning our declarative semantics of evolving agents, and we introduce the
A-ILTL temporal logic and its semantics. In Section 3 we introduce A-ILTL Rules in
various forms, and provide their semantics. We compare the proposed approach with
other approaches to agent verification in Section 4. In Section 5 we provide an example
demonstrating how the various elements of the proposed approach can be put at work
in synergy. Finally, in Section 6 we conclude.

2 Agent Evolution

2.1 Evolutionary Semantics

In this paper we will refer to the declarative semantics introduced in [8], aimed at declar-
atively modeling changes inside an agent which are determined both by changes in the
environment, that we call external events, and by the agent’s own self-modifications,
that we call internal events. The key idea is to understand these changes as the result of
the application of program-transformation functions that perform changes to the agent
program. E.g., the internal event corresponding to the decision of the agent to embrace a
goal triggers a program transformation step, resulting in a version of the program where
a corresponding plan is “loaded” so as to become executable.

An agent in this framework is defined as the tuple Ag = < PAg , E, I, A > where
Ag is the agent name and PAg (that we call “agent program”) describes the agent be-
havioral rules in some agent-oriented language L. E is the set of the external events,
i.e, events that the agent is capable to perceive and recognize: let E = {E1, . . . , En}
for some n. I is the internal events set (distinguished internal conclusions): let I =
{I1, . . . , Im} for some m. A is the set of actions that the agent can possibly perform:
let A = {A1, . . . , Ak} for some k. Let Y = (E ∪ I ∪ A). In set Y , a postfix (to be
omitted if irrelevant) indicates the kind of event. I.e., XE is an external event, XA is an
action and XI an internal event.

Program PAg written by the programmer is transformed into the initial agent pro-
gram P0 by means of an (optional) initialization step, that may possibly rewrite the



program in an intermediate language and/or load a “virtual machine” that supports lan-
guage features and/or extract control information, etc. Thus, P0 can be simply a pro-
gram (logical theory) or can have additional information associated to it.

Later on, P0 will evolve according to events that happen and actions which are
performed, through corresponding program-transformation steps (each one transform-
ing Pi into Pi+1, cf. [8]), thus producing a Program Evolution Sequence PE =
[P0, . . . , Pn, . . .]. The program evolution sequence will imply a corresponding Seman-
tic Evolution Sequence ME = [M0, . . . ,Mn, . . .] where Mi is the semantic account of
Pi according to the semantics of L. Notice in fact that the approach is parametric w.r.t
L.

The choice of a specific L will influence the following key points: (i) when a tran-
sition from Pi to Pi+1 takes place, i.e., which are the external and internal factors that
determine a change inside the agent; (ii) which kind of transformations are performed;
(iii) which semantic approach is adopted, i.e., how Mi is obtained from Pi.

Let H be the history of an agent as recorded by the agent itself, and contains events
that happened and actions that have been performed by the agent (seen as a particular
kind of event), each one time-stamped so as to indicate when they occurred. In particu-
lar, we introduce a set P of current “valid” past events that describe the current state of
the world 1, and a set PNV where to store previous ones if still useful. Thus, the history
H is the couple 〈P, PNV 〉. In practice, H is dynamically updated with new events that
happen: as soon as event X is perceived by the agent, it is recorded in P in the form
XP

Y : Ti, Y ∈ {E,A, I}. In [9] we have defined Past Constraints, which allow one
to define when and upon which conditions (apart from arrival of more recent ones) past
events should be moved into PNV.

Definition 1 (Evolutionary semantics). Let Ag be an agent. The evolutionary seman-
tics εAg of Ag is a tuple 〈H,PE,ME〉, where H is the history of Ag, and PE and
ME are respectively its program and semantic evolution sequences.

The next definition introduces the notion of instant view of εAg , at a certain stage
of the evolution (which is in principle of unlimited length).

Definition 2 (Evolutionary semantics snapshot). Let Ag be an agent, with evolu-
tionary semantics εAg = 〈H,PE,ME〉. The snaphot at stage i of εAgi is the tuple
〈Hi, Pi,Mi〉, where Hi is the history up to the events that have determined the transi-
tion from Pi−1 to Pi.

In [8] we have coped in detail with evolutionary semantics of DALI language, spec-
ifying which program transformation steps are associated with DALI language con-
structs. We hope however to have convinced the reader about the fact that the approach
is in principle applicable to many other agent-oriented languages.

2.2 Interval Temporal Logic A-ILTL

For defining properties that are supposed to be respected by an evolving system, a well-
established approach is that of Temporal Logic (introduced in Computer Science by

1 An agent can describe the state of the world only in terms of its perceptions, where more recent
remembrances define the agent’s approximation of the current state of affairs.



Pnueli [20], for a survey the reader can refer to [21]), and in particular of Linear-time
Temporal Logic (LTL). LTL logics are called ‘linear’ because, in contrast to branching
time logics, they evaluate each formula with respect to a vertex-labeled infinite path (or
“state sequence”) s0s1 . . .where each vertex si in the path corresponds to a point in time
(or “time instant” or “state”). LTL enriches an underlying propositional logic language
with a set of temporal unary and binary connectives referring to future time and past
time. In what follows, we use the following notation for the best-known LTL operators:
X stands for ‘next state’, or next time; F stands for ‘eventually’, or ‘sometime’; G
stands for ‘always’, N stands for ‘never’.

LTL expressions are interpreted in a discrete, linear model of time. Formally, this
structure is represented byM = 〈N, I〉 where, given countable set Σ of atomic propo-
sitions, interpretation function I : N 7→ 2Σ maps each natural number i (representing
state si) to a subset of Σ. Given set F of formulas built out of classical connectives
and of LTL operators, the semantics of a temporal formula is provided by the satisfac-
tion relation |= : M × N × F → {true, false}. For ϕ ∈ F and i ∈ N we write
M, i |= ϕ if, in the satisfaction relation, ϕ is true w.r.t.M, i. We can also say (leaving
M implicit) that ϕ holds at i, or equivalently in state si, or that state si satisfies ϕ. For
atomic proposition p ∈ Σ, we haveM, i |= p iff p ∈ I(i). The semantics of |= for clas-
sical connectives is as expected, and the semantics for LTL operators is as reported in
[21]. A structureM = 〈N, I〉 is a model of ϕ ifM, i |= ϕ for some i ∈ N. Similarly
to classical logic, an LTL formula ϕ can be satisfiable, unsatisfiable or valid and one
can define the notions of entailment and equivalence between two LTL formulas.

In prior work (see e.g., [22]) we informally introduced an extension to temporal
logic based on intervals, called A-ILTL for ‘Agent-Oriented Interval LTL’, that we re-
port, formalize and extend here. Via A-ILTL operators the time point or the time interval
in which a given temporal formula is supposed to hold are explicitly stated. E.g., Gm,n
(always in time interval) states that formula ϕ should become true at most at state sm
and then hold at least until state sn. Intervals can have an upper bound or can be unlim-
ited, in the sense that only the lower bound is provided.

The introduction of A-ILTL is in our opinion useful despite the fact that, since the
seminal work of [23], several “metric temporal logics” (MTL) have been defined (cf.,
e.g., [24,25] and the references therein). These logics are able to express “metric”, or
quantitative time constraints. This is important and necessary as in many systems and
applications there are properties which are not required to hold forever or somewhere
in time, but in specific time instants or intervals: in fact, a system can be required to
performed a certain task at or by a certain time, or for a certain duration. MTL logics
however have been mainly devised for applications involving real-time and hybrid sys-
tems, with an underlying ’dense’ (continuous) model of time, based on real numbers.
Consequently, as pointed out in [25], general results about expressiveness, decidability
and complexity are lacking as these properties turn out to be sensitive to slight differ-
ences in the semantics or in the choice of operators. In contrast, A-ILTL is defined as a
simple extension of LTL, then still relying upon an underlying discrete linear model of
time. We impose strong limitations upon nesting of operators, so as to avoid having to
explicitly cope with the representation of time intervals and their interactions. However,



as we will see in the rest of the paper this simple formulation is sufficient for expressing
and checking a number of interesting properties of agent systems.

Formal syntax and semantics of “core” A-ILTL operators (also called below “Inter-
val Operators”) are defined as follows.

Definition 3. Set F of A-ILTL formulas is built out out of classical connectives and of
LTL operators and of the following A-ILTL operators, where m,n are positive integer
numbers (withm ≤ n), andϕ and ψ are LTL formulas (i.e., nesting of A-ILTL operators
is not allowed).

C(i) (current state). C(i) is true if si is the current state. I.e., M, i |= C(i′) iff
i = i′. From this operator we obtain the shorthand expression now , where
now = t : C(t).

pi (p at i). Proposition p holds at time i. This notation transposes a propositional
letter into a “timed” version. I.e.,M, i |= p(i) ifM, i |= p. The short form
pnow is a shorthand, whereM, i |= pnow ifM, i |= pi ∧ C(i).

p〈i〉 (p since i). Proposition p holds since time i. This notation transposes a proposi-
tional letter into a “timed” version, but considers a peculiar feature of agents,
where due to the interaction with the environment the agent modifies its knowl-
edge base. There is no need to change the overall semantic framework, as
function I may account for such changes. I.e., M, i |= p〈i〉 if M, i |= p
and ∀i′ < i, M, i′ 6|= p. The short form p〈now〉 is a shorthand, where
M, i |= p〈now〉 ifM, i |= p〈i〉 ∧ C(i).

Xm (future m-state).Xmϕ holds if ϕ is true in the (m+1)-th state after the current
state. I.e.,M, i |= Xmϕ ifM, i′ |= ϕ, i′ = i + m. This operator is relative
to current state C(i), in fact it can hold or not hold depending on state i that is
considered. Therefore a more suitable form isXm(i), where the reference state
is explicitly stated.

Fm (bounded eventually (or “finally”)). Fmϕ holds if ϕ is true somewhere on
the path from the current state to the (m)-th state after the current one. I.e.,
M, i |= Fmϕ if there exists j such that j ≥ i and j ≤ i+m andM, j |= ϕ.
This operator is relative to current stateC(i), in fact it can hold or not hold de-
pending on state i that is considered. Therefore a more suitable form is Fm(i),
where the reference state is explicitly stated.

Fm,n (eventually (or “finally”) in time interval). Fm,nϕ states that ϕ has to hold
somewhere on the path from state sm to state sn. I.e.,M, i |= Fm,nϕ if there
exists j such that j ≥ m and j ≤ n andM, j |= ϕ.

Gm (bounded always). Gmϕ states that ϕ should become true at most at state sm.
It is different from LTL G in that the state where the property should start to
hold is explicitly indicated. I.e., M, i |= Gmϕ if for all j such that j ≥ m
M, j |= ϕ.

G〈m〉 (bounded strong always). Gm,nϕ states that ϕ should become true just at state
sm, while it was not true at previous states. I.e.,M, i |= G〈m〉ϕ if for all j
such that j ≥ mM, j |= ϕ and ∀i′ < m,M, i′ 6|= ϕ.

Gm,n (always in time interval). Gm,nϕ states that ϕ should become true at most at
state sm and then hold at least until state sn. I.e.,M, i |= Gm,nϕ if for all j
such that j ≥ m and j ≤ nM, j |= ϕ.



G〈m,n〉 (strong always in time interval). G〈m,n〉ϕ states that ϕ should become true just
in sm and then hold until state sn, and not in sn+1. I.e.,M, i |= G〈m,n〉ϕ if
for all j such that j ≥ m and j ≤ nM, j |= ϕ, and ∀j′ < m,M, j′ 6|= ϕ,
andM, j′′ 6|= ϕ, j′′ = n+ 1.

N b
m (never before). N b

mϕ states that ϕ should not be true in any state prior than
sm, i.e.,M, i |= N b

mϕ if there not exists j such that j < m andM, j |= ϕ.
Na
m (never after). Na

mϕ states that ϕ should not be true in any state after sm, i.e.,
M, i |= Na

mϕ if there not exists j such that j > m andM, j |= ϕ.
Nm,n (never in time interval). Nm,nϕ states that ϕ should not be true in any state

between sm and sn, i.e.,M, i |= Nm,nϕ if there not exists j such that j ≥ m
and j ≤ n andM, j |= ϕ.

Em,f (bounded sometimes). Em,nϕ states that ϕ has to be true one or more times
starting from state sm, with frequency f . I.e.,M, i |= Em,fϕ ifM,m |= ϕ
andM, i |= Em′,fϕ, m′ = m+ f .

Em,n,f (sometimes in time interval). Em,nϕ states that ϕ has to be true one or more
times between sm and sn, with frequency f . I.e.,M, i |= Em,n,fϕ ifM, i |=
ϕ whevener m + f ≥ n, or otherwise ifM,m |= ϕ andM, i |= Em′,nϕ
with m′ = m+ f .

Other A-ILTL operators (also referring to the past) can be defined (see [22], where
a preliminary version of A-ILTL, called I-METATEM, was presented) but we do not
report them here for the sake of brevity. There is no need to change the notion of model
reported above for LTL: in fact, drawing inspiration from the LTL treatment of ‘next
state’ and ‘sometime’, an A-ILTL formula holds in a state if it can be checked to hold
in the states included in the interval the formula refers to. In this sense, it is the whole
state sequence that implies truth or falsity of an A-ILTL formula. However, it is easy
to see that for most A-ILTL formulas Opϕ there is a crucial state where it is definitely
possible to assess whether the formula holds or not in given state sequence, by observing
the sequence up to that point and ignoring the rest. The crucial state is for instance i+m
for Xm(i), some j with j ≥ i and j ≤ m for Fm(i), etc. It corresponds to the upper
bound of the interval of interest of operator Op, which is the interval [v, w] of the first
and last states where the inner formula ϕ must be checked, according to the semantic
definition of the operator. Sometimes w can be∞. If w = ∞ then there is no crucial
state, as it is the case for instance for Na

m.
In the above formulation, for simplicity we do not allow A-ILTL operators to be

nested. An extension in this sense is possible, but one should then consider how tem-
poral intervals interact (cf., e.g., [26] for a survey of many existing interval temporal
logics), and this requires relevant modifications to the semantic approach that should
explicitly cope with time intervals instead of time instants. Instead, A-ILTL operators
can occur within LTL ones. We have purposedly defined a very simple interval logic
that, as we will see below, is sufficient to our aims with no computational extra-burden.
In fact, it is easy to get convinced that the addition of interval operators leaves the
complexity of the resulting logic unchanged with respect to plain LTL.

We can employ A-ILTL formulas in response formulas (also called response rules)
in the sense of [27]. They are of the form p⇒ q, meaning that any state which satisfies
p must be followed by a later state which satisfies q (see [27] for formal properties of



⇒). Assuming for instance a suitable encoding of time and date with corresponding
operators for adding, say, minutes hours or days to a given date, one can write by means
of A-ILTL formulas response rules such as the following, stating that upon an order
received at date d, the corresponding product should be delivered within k days.

received order 〈d〉 ⇒ Fd+kdays deliver product

To express that orders must always be processed this way, we can exploit the corre-
sponding LTL operator:

G(received order 〈d〉 ⇒ Fd+kdays deliver product)

The A-ILTL formula below states that one (maybe an e-mail system), if realizing to
be expecting new mail, should from now on check the mailbox every 5 minutes (5m).

Gnowexpect mail ⇒ Enow ,5m
check mail

A-ILTL is particularly well-suited for the agent setting, where temporal aspects mat-
ter also from the point of view of when, since when and until when agent properties
should hold.

Similar rules, but without intervals, can be expressed in the METATEM logic
[28,29,30], whose language is based on classical propositional logic enriched by tem-
poral connectives and on the direct execution of temporal logic statements: in the
METATEM approach, the⇒ in a response rule such as p⇒ q is interpreted in an imper-
ative fashion as ’Then Do’. I.e., a response rule is interpreted (similarly to a conditional
in traditional imperative programming languages) as ’If p Then Do q’. In METATEM,
the antecedent p encodes solely (without loss of generality) properties referring to the
past, where the consequent q encodes what the agent should do whenever p holds. Inter-
vals and frequency however add significant expressive power (in the pragmatic sense,
not in reference to complexity) in practical agent settings. In fact, these features are
important and sometimes crucial in many knowledge representation applications, in-
cluding deontic defeasible logics (see, e.g., the temporal logic of violations presented
in [31]).

2.3 Interval Temporal Logic and Evolutionary Semantics

In this section, we refine our Interval Temporal Logic so as to operate on a sequence
of states that corresponds to the Evolutionary Semantics defined before. In fact, states
in our case are not simply intended as time instants. Rather, they correspond to stages
of the agent evolution, marked with the time when each stage has been reached. Time
in this setting is considered to be local to the agent, where with some sort of “inter-
nal clock” is able to time-stamp events and state changes. We borrow from [32] the
following definition of timed state sequence, that we tailor to our setting.

Definition 4. Let σ be a (finite or infinite) sequence of states, where the ith state ei, ei ≥
0, is the semantic snaphots at stage i εAgi of given agent Ag . Let T be a corresponding
sequence of time instants ti, ti ≥ 0. A timed state sequence for agent Ag is the couple
ρAg = (σ, T ). Let ρi be the i-th state, i ≥ 0, where ρi = 〈ei, ti〉 = 〈εAg

i , ti〉.



We in particular consider timed state sequences which are monotonic, i.e., if ei+1 6=
ei then ti+1 > ti. In our setting, it will always be the case that ei+1 6= ei as there is no
point in semantically considering a static situation: as mentioned, a transition from ei
to ei+1 will in fact occur when something happens, externally or internally, that affects
the agent.

Then, in the above definition of A-ILTL operators, it would be immediate to let
si = ρi. This requires however a refinement: in fact, in our setting, A-ILTL operators
are intended to be used within agent programs to define properties to be verified during
agent evolution. In this kind of use, when writing Opm or Opm,n parameters m and
n are supposed to define the interval of time in which the property is expected to hold
in the program definition: then, m and n will not necessarily coincide with the time
instants of the above-defined timed state sequence. To fill this gap, we introduce the
following approximation.

Definition 5. Given positive integer number t, we introduce the following terminology.
We indicate with ρ̌t state ρ = 〈εAg, ť〉 where ť ≥ t and ∀ρ′ = 〈εAg ′, t′〉 with t′ < ť we
have t′ < t. We indicate with ρ̂t state ρ = 〈εAg, t̂〉 where t̂ ≥ t and ∀ρ′′ = 〈εAg ′′, t′′〉
with t′′ > t̂ we have t′′ > t.

That is, if t represents a time instant not exactly coincident with an element of
the time sequence T , ρ̌t is the state whose time component better approximates t “by
defect”, i.e., the upper bound of all states whose time component is smaller than t. Sym-
metrically, ρ̂t is the state whose time component better approximates t “by excess”, i.e.,
the lower bound of all states whose time component is greater than t. Notice that, given
A-ILTL expression Opm,n φ state ρ̌t is the first state where φ becomes ‘observable’ in
the agent’s semantics, i.e., the first state where φ is actually required to hold, and ρ̂t is
the last such state. Therefore in the following, by Opm (resp. Op〈m〉) we will implicitly
mean Op ρ̌m and by Opm,n (resp. Op〈m,n〉) we will implicitly mean Op ρ̌m,ρ̂n .

We need to adapt the interpretation function I to our setting. In fact, we intend
to employ A-ILTL within agent-oriented languages. In particular, we restrict ourselves
to logic-based languages for which an evolutionary semantics and a notion of logical
consequence can be defined. Thus, given agent-oriented language L at hand, the set
Σ of propositional letters used to define an A-ILTL semantic framework will coincide
with all ground2 expressions ofL. Each expression ofL has a (possibly infinite) number
of ground versions, obtained by replacing variables with constants (from the alphabet
of L) in every possible way. A given agent program can be taken as standing for its
(possibly infinite) ground version. This is customarily done in many approaches, such
as for instance Answer Set Programming (see e.g., [33] and the references therein).
Notice that we have to distinguish between logical consequence in L, that we indicate
as |=L, from logical consequence in A-ILTL, indicated above simply as |=. However,
the correspondence between the two notions can be quite simply stated by specifying
that in each state si the propositional letters implied by the interpretation function I
correspond to the logical consequences of agent program Pi:

Definition 6. Let L be a logic language. Let ExprL be the set of ground expressions
that can be built from the alphabet of L. Let ρAg be a timed state sequence for agent Ag ,

2 An expression is ground if it contains no variables



and let ρi = 〈εAg
i , ti〉 be the ith state, with εAg

i = 〈Hi, Pi,Mi〉. An A-ILTL formula τ
is defined over sequence ρAg if in its interpretation structureM = 〈N, I〉, index i ∈ N
refers to ρi, which means that Σ = ExprL and I : N 7→ 2Σ is defined such that, given
p ∈ Σ, p ∈ I(i) iff Pi |=L p. Such an interpretation structure will be indicated with
MAg . We will thus say that τ holds/does not hold w.r.t. ρAg .

In practice, run-time verification of A-ILTL properties may not occur at every state
(of the given interval). Rather, sometimes properties need to be verified with a certain
frequency, that can even be different for different properties. Then, we have introduced
a further extension that consists in defining subsequences of the sequence of all states: if
Op is any of the operators introduced in A-ILTL and k > 1,Opk is a semantic variation
of Op where the sequence of states ρAg of given agent is replaced by the subsequence
s0, sk1 , sk2 , . . . where for each kr, r ≥ 1, kr mod k = 0, i.e., kr = g × k for some
g ≥ 1.

A-ILTL formulas to be associated to given agent can be defined within the agent
program, though they constitute an additional but separate layer. In fact, their semantics
is defined as seen above on the agent evolution ρAg . In the next sections we will review
and extend previous work on such rules, and we will provide their semantics in terms of
the above-defined framework. Rules properly belonging to the agent program Pi will be
called object rules, and the set of object rules composing Pi can be called object layer.
In this sense, L can be called object language. The set of A-ILTL formulas associated to
given agent, that represent properties which agent evolution should hopefully fulfil, can
be called check layer and will be composed of formulas {τ1, . . . , τl}. Agent evolution
can be considered to be “satisfactory” if it obeys all these properties.

Definition 7. Given agent Ag and given a set of A-ILTL expressionsA = {τ1, . . . , τl},
timed state sequence ρAg is coherent w.r.t.A if A-ILTL formulaGζ with ζ = τ1∧. . .∧τn
holds.

Notice that the expression Gζ is an invariance property in the sense of [34]. In fact,
coherence requires this property to hold for the whole agent’s “life”. In the formulation
Gm,nζ that A-ILTL allows for, one can express temporally limited coherence, concern-
ing for instance “critical” parts of an agent’s operation. Or also, one might express forms
of partial coherence concerning only some properties.

An “ideal” agent will have a coherent evolution, whatever its interactions with the
environment can be, i.e., whatever sequence of events arrives to the agent from the ex-
ternal “world”. However, in practical situations such a favorable case will seldom be
the case, unless static verification has been able to ensure total correctness of agent’s
behavior. Instead, violations will occasionally occur, and actions should be undertaken
so as to attempt to regain coherence for the future. Also, some properties will not have
to be checked anyway, but only upon occurrence of certain situations. In the follow-
ing sections, we will introduce two kinds of A-ILTL rules (that we also call A-ILTL
expressions), we will explain their usefulness and provide their semantics.

A-ILTL rules may include asserting and retracting object rules or sets of object
rules (“modules”). Thus, below we provide a semantic account of such operations, that
is easily defined w.r.t. the Evolutionary Semantics. The need of modifying the agent’s
knowledge base has been widely discussed with respect to EVOLP [35,36]. It has also



been discussed in [37], about agents learning by “being told” from other trusted agents,
by exchanging sets of rules. In the present setting, we will assume to assert/retract
ground (sets of) rules. However, in general this assumption can be relaxed as one can
resort to reified form of rules, where variables are provisionally represented by con-
stants (cf. [38] and the references therein). In this setting, we consider assertm(ρ) and
retractm(ρ) as special A-ILTL operators, with the following semantics. In particular, a
rule asserted at state si will be entailed by next state. Symmetrically, after retract a rule
will no longer be entailed, with the provision that only existing rules can be retracted.

Definition 8. Let ρ be a rule expressed in language L and ρAg be a timed state se-
quence for given agent. The set of A-ILTL operators is enriched by the following.

assertm(ρ) (assert rule). assertm(ρ) holds if ρ belongs to the agent program in the
next state. I.e.,M, i |= assertm(ρ) ifM,m′ |= ρ, m′ = m+ 1.

retractm(ρ) (retract rule). retractm(ρ) holds if ρ belongs to the agent program in cur-
rent state, and will no longer belong to it in the next state. I.e., M, i |=
retractm(ρ) ifM,m |= ρ andM,m′ 6|= ρ, m′ = m+ 1.

3 A-ILTL rules and meta-rules in Agent Programs

There can be different ways of exploiting A-ILTL and in general temporal logic in
agent-oriented languages. The METATEM programming language [28,29,30], for in-
stance, is directly based upon the METATEM logic: temporal operators are interpreted
as modalities, and semantics is provided accordingly. This semantics is the ‘core’ of
an executable ‘imperative’ language. In fact, in the authors view rules such as response
rules are ‘imperative’ in the sense that they imply performing actions. We embrace a
different position, on the one hand because of the complexity (it is well-known that
model-checking for LTL is PSPACE-complete, see [39]) but on the other hand because,
as outlined in previous section, we believe that A-ILTL expressions might constitute a
check layer to be added to agent programs, whatever the specific formalism in which
agents are expressed.

How should A-ILTL expressions be checked? As mentioned, the fact that all ex-
pressions associated to an agent program are valid is an invariance property that should
hold all along (or at least in specific, “critical” intervals). However, agents evolution
is discrete, so A-ILTL expressions can at most be checked at each stage of the evolu-
tionary semantics. Moreover, both the specific expression and the particular application
may require checks to be performed at a certain frequency. As seen before, we explicitly
associated a frequency with the operator E: in fact, this frequency defines it very na-
ture. However, for the other operators we preferred to just define timed sub-sequences,
so as to defer the specification of frequency to the particular implementation setting
rather than introducing it into the logic. For instance, the expression (where, following
a prolog-like syntax, predicates are indicated with lower-case initial letter and variables
in upper-case):

G within range(Temperature)

should be clearly checked much more frequently if supervising a critical appliance than
if supervising domestic heating. Thus, following the famous statement of [40] that “Al-
gorithm = Logic + Control”, we assume to associate to each agent program specific



control information including the frequency for checking A-ILTL operators. Specifi-
cally, in the formulation below we associate the frequency to an (optional) additional
parameter of each operator.

The representation of A-ILTL operators within a logic agent-oriented programming
language can be, e.g., the one illustrated in Table 1, that we have adopted in DALI,
where m and n denote the time interval and k is the frequency. We will call this syntax
practical or also pragmatic syntax. When not needed, the argument corresponding to
frequency can be omitted. A plain LTL operator OP can be expressed by omitting all
arguments. The operator OP on the right column of each line is called pragmatic A-
ILTL operator and is said to correspond to A-ILTL operator Op on the left column.

A-ILTL Opk OP(m,n;k)
now NOW (t)

Xm
k NEXT (m; k)

F k
m EVENTUALLY (m; k)

Fm,n
k EVENTUALLY (m,n; k)

Gm
k ALWAYS(m; k)

G〈m〉
k ALWAYS S(m; k)

Gm,n
k ALWAYS(m,n; k)

G〈m,n〉
k ALWAYS S(m,n; k)

Nb
m

k
NEVER B(m; k)

Na
m

k NEVER A(m; k)

Nm,n
k NEVER(m,n; k)

Em,k SOMETIMES(m; k)

Em,n,k SOMETIMES(m,n; k)
Table 1. A-ILTL operators

In the following, we refer to rule-based logic programming languages like DALI,
where A-ILTL formulas occur in the agent program of which they constitute the check
layer. For simplicity, in this context we restrict ϕ to be a conjunction of literals. For-
mulas built out of pragmatic A-ILTL operators with such a restriction on ϕ are called
pragmatic A-ILTL formulas (though with some abuse of notation and when clear from
the context we will often omit the adjective). In pragmatic A-ILTL formulas, ϕ must be
ground when the formula is checked. However, similarly to negation-as-failure (where
the negated atom can contain variables, that must however have been instantiated by
literals evaluated previously), we allow variables to occur in an A-ILTL formula, to be
instantiated via a context χ. From the procedural point of view, χ is required to be eval-
uated in the first place so as to make the A-ILTL formula ground. Notice that, for the
evaluation of ϕ and χ, we rely upon the procedural semantics of the ‘host’ language
L. For prolog and DALI, (extended) resolution procedures [41] guarantee, with some
peculiarities, correctness and, under some conditions, completeness w.r.t. declarative
semantics. Below, with some abuse of notation we talk about A-ILTL formulas both in
a theoretical and practical sense, in the latter case referring to pragmatic A-ILTL opera-



tors with the above restriction on ϕ. Whenever discussing A-ILTL formulas (and, later,
A-ILTL expressions and rules) we will implicitly refer to timed state sequence ρAg for
given agent, and by ‘state(s)’ we mean state(s) belonging to this sequence. In practice,
this state sequence will develop along time according to agent’s activities, so during
agent operation only the prefix of the state sequence developed up to the present time
can be “observed” in order to evaluate A-ILTL formulas.

Definition 9. Let OP(m,n; k)ϕ be a pragmatic A-ILTL formula. The corresponding
contextual A-ILTL formula has the form OP(M ,N ; K )ϕ :: χ where:

– M ,N andK can be either variables or constants and ϕ is a conjunction of literals;
– χ is called the evaluation context of the rule, and consists of a conjunction of liter-

als;
– each of the M , N and K which is a variable and each variable occurring in ϕ

must occur in an atom (non-negated literal) of χ.

In the following, a contextual A-ILTL formula will implicitly stand for the ground
A-ILTL formula obtained via evaluating the context. We have to establish how to op-
erationally check whether such a formula τ holds. In fact, during agent operation one
cannot observe the entire state sequence. In all points preceding the interest interval
(as defined in previous section) there is no harm in assuming that τ holds. Within the
interest interval, τ can be provisionally assumed to hold if the inner formula ϕ holds in
all points up to now. When the crucial state (which is the upper bound of the interest
interval) is reached, τ can be definitely established to hold or not.

Definition 10. Given operator OP(m,n) corresponding to A-ILTL operator Opm,n
(resp. operator OP(m) corresponding to Opm), an A-ILTL formula OP(m,n)ϕ (resp.
OP(m)ϕ, we disregard frequency here) operationally holds w.r.t. state si if, given in-
terval of interest [v, w] of Opm,n (resp. Opm), one of the following conditions hold:

– i < v;
– i ≥ v and i ≤ w, i.e., i is in the interest interval, and ϕ holds (according to the

semantics of Op) in all states of sub-interval [v, i];
– i ≥ w, i.e., i is the crucial state or i is beyond the crucial state, and Opϕ holds.

In the next sections, whenever saying that an A-ILTL formula τ holds we implicitly
mean (unless differently specified or clear from the context) that τ holds operationally.
For uniformity, the above formulas will be called A-ILTL rules, though as we will see
below they act as constraints that are required to be fulfilled, otherwise there is an
anomaly in the agent’s operation. In what follows we will discuss how to manage such
anomalies.

3.1 A-ILTL Rules with Repair and Improvement

There can be the case where an A-ILTL expression, checked at a certain stage of the
agent evolution, does not hold (we say that it is violated). What to do upon violation? In
static checking, the outcome can indicate a violation, and the agent program should be
modified so as to remove the anomalous behavior. But, at run-time, no such correction



is possible, and there is in general no user intervention. However, the agent may try to
repair itself, by self-modifications to its goals and commitments or even to its code,
by adding/removing (sets of) rules. Even when, on the contrary, an A-ILTL expression
holds, actions may be undertaken as an improvement. Take for instance the example of
one who wants to lose some weight by a certain date. If (s)he fails, then (s)he should
undertake a new diet, with less calories. But if (s)he succeeds before the deadline, then
a normocaloric diet should be resumed.

Definition 11. An A-ILTL rule with a repair/improvement is a rule the form:
OP(M ,N ; K )ϕ :: χ÷ η ÷ ξ, where:

– OP(M ,N ; K )ϕ :: χ is a contextual A-ILTL rule, called the monitoring condition;
– η is called the repair action of the rule, and it consists of an atom η;
– ξ (optional) is called the improvement action of the rule, and it consists of an atom
η.

Whenever the monitoring condition OP(M ,N ; K ) of an A-ILTL rule is violated,
the repair action η is attempted. The repair action is specified via an atom that is ‘exe-
cuted’ in the sense that it gives way to an inference process as provided by host language
L (in the prolog terminology, that here we adopt, the atom is a ‘goal’). If instead the
monitoring condition succeeds, in the sense that the specified interval is expired and the
A-ILTL formula holds or, in case of the operator ‘eventually’, if ϕ holds within given
interval, then the improvement action, if specified, can be ‘executed’.

The above-mentioned example can be formalized as follows:

EVENTUALLY (May−15−2012 , June−10−2012 ) lose five kilograms
÷ new stricter diet(June−10−2012 , June−30−2012 )
÷ resume normal diet

An A-ILTL rule with improvement/repair should of course give way to specified
actions whenever the involved A-ILTL formula can be deemed to hold/not to hold i.e.,
in our terminology, as soon as its ‘critical state’ is reached. Formally:

Definition 12. Let ρAg be a timed state sequence for agent Ag and let α = τ ÷ η ÷ ξ
be an A-ILTL rule with repair/improvement occurring in Ag’s agent program, where τ
is a contextual A-ILTL formula. α is fulfilled in ρ if, given crucial state ρk for Op, one
of the following conditions hold: (i) τ does not hold, and ρk+1 |= η; (ii) τ holds, and
ρk+1 |= ξ.

3.2 Evolutionary A-ILTL Expressions

It can be useful in many applications to define properties to be checked upon arrival
of partially known sequences of events. In general in fact, it is not possible to fully
establish in advance which events will arrive and in which order. Moreover, restricting
the agent “perception” only to known events or to an expected order heavily limits the
ability of the agent to improve its behavior in time, e.g. via forms of learning. This is



our motivation for introducing a new kind of A-ILTL rules, that we call Evolutionary
A-ILTL Expressions (first introduced in a preliminary form in [42,43]).

These expressions are based upon specifying: (i) a sequence of past events that
may have happened; (ii) an A-ILTL formula defining a property that should hold; (iii)
a sequence of events that might happen in the future, without affecting the property;
(iv) a sequence of events that are supposed not to happen in the future, otherwise the
property will not hold any longer; (v) optionally, “repair” actions to be undertaken if
the property is violated.

To be able to indicate in a flexible way sequences of events of any (unlimited) length
we admit a syntax inspired to regular expressions [44].

Definition 13. IfE is an event,E∗ will indicate zero or more occurrences ofE, andE+

one or more occurrences. Given events E1 and E2, by E1, E2 we mean that they may
occur in any order; by E1 • •E2 we mean that E1 must occur before E2 (with possibly
a sequence of unspecified events in between); by E1 • E2 we mean that E1 must occur
immediately beforeE2 (i.e., the two events must be consecutive). Wild-cardX , standing
for unspecified event, can be used 3. Given set of events Ev = {E1, . . . , Ek}, k ≥ 0,
let an event sequence for (or corresponding to) Ev, indicated with SEv , be a sequence
defined in the above way on events in Ev. Event list Z1, . . . , Zr, r > 0, satisfies SEv if
all the Zis occur in SEv following the specified order.

For instance, E+
1 • •E2, E3 •X • E4 means that, after a certain (non-zero) number of

occurrences of E1 and, possibly, of some unknown event, E2 and E3 can occur in any
order. They are followed by one unknown eventX and, immediately afterwards, byE4.
List E1, E3 satisfies the above sequence, as both events occur in it in given order, while
list E3, E1 does not, as the order is not correct.

Definition 14 (Evolutionary LTL Expressions). Let Evp = {EP1
, . . . , EPl

}, l > 1,
be a set of past events, and F = {F1, . . . , Fm}, J = {J1, . . . , Jr}, m, r ≥ 0, be
sets of events. Let SEvp, SF and J J be corresponding event sequences. Let τ be a
contextual A-ILTL formula Op ϕ :: χ. An Evolutionary LTL Expression $ is of the
form SEvp : τ ::: SF :::: J J where:

– SEvp denote the sequence of relevant events which are supposed to have happened,
and in which order, for the rule to be checked; i.e., these events act as preconditions:
whenever one or more of them happen in given order, τ will be checked;

– SF denote the events that are expected to happen in the future without affecting τ ;
– J J denote the events that are expected not to happen in the future; i.e., whenever

any of them should happen, $ is not required to hold any longer, i.e., these can be
called are “breaking events”.

3 Notice that, for an agent, an event “occurs” when the agent perceives it. This is only partially
related to when events actually happen in the environment where the agent is situated. In
fact, the order of perceptions can be influenced by many factors. However, either events are
somehow time-stamped externally (by a reliable third-party) whenever they happen, so as to
certify the exact time of their origin (as sometimes it may be the case), or an agent must rely
on its own subjective experience.



The state until which $ is required to hold is the critical state of the operator Op
occurring in τ provided that if one of the Ji’s happens at intermediate state sw, then $
is not required to hold after sw.

Notice that both the Fi’s and the Ji’s are optional, and that we do not require the EPi
’s,

the Fi’s and the Ji’s to be ground terms: variables occurring in them indicate values in
which we are not interested.

An Evolutionary LTL Expression can be evaluated w.r.t. a state si, which contains
(in the component εAg

i ) the history Hi of the agent, i.e., the list of past events: in fact,
within an agent, an event has happened if it occurs as a past event inHi. The expression
holds, also in presence of expected or breaking events, if the inner contextual A-ILTL
formula τ holds, or if a breaking event has occurred (as in this case τ is no longer
required to hold). Notice that Hi satisfies each of the event sequences in the definition
of an A-ILTL Expression $ provided that Hi includes zero or more elements of the
sequence, the specified order. Formally:

Definition 15. An Evolutionary A-ILTL Expression $, of the form specified in Defini-
tion 14, holds in state si whenever (i) Hi satisfies SEvp and SF , but not J J , and τ
holds or (ii) Hi satisfies J J .

Definition 16. An Evolutionary A-ILTL Expression $, of the form specified in Defini-
tion 14, is violated in state si whenever Hi satisfies SEvp and SF , but not J J , and τ
does not hold.

Definition 17. An Evolutionary A-ILTL expression $, of the form specified in Defini-
tion 14, is broken in state si whenever Hi satisfies SEvp, SF and J J , and τ does not
hold.

Operationally, an Evolutionary A-ILTL Expression can be finally deemed to hold if
either the critical state has been reached and τ holds, or an unwanted event (one of the
Jis) has occurred. Instead, an expression can be deemed not to hold (or, as we say, to be
violated as far as it expresses a wished-for property) whenever τ is false at some point
without breaking events.

The following is an example of Evolutionary A-ILTL Expression stating that, after
a car has been submitted to a checkup, it is assumed to work properly for (at least) six
months, even in case of (repeated) long trips, unless an accident occurs.

checkupP (Car) :T : ALWAYS (T, T + 6months) work ok(Car)
::: long trip+(Car)
:::: accident(Car)

As said before, whenever an unwanted event (one of the Jis) should happen, $
is not required to hold any longer (though it might). The proposition below formally
allows for dynamic run-time checking of Evolutionary A-ILTL Expressions. In fact, it
states that, if a given expression holds in a certain state and is supposed to keep holding
after some expected events have happened, then checking this expression amounts to
checking the modified expression where: (i) the occurred events are removed from event
sequences, and (ii) subsequent events are still expected.



Proposition 1. Given Evolutionary A-ILTL Expression of the form specified in Defini-
tion 14, assume that $ holds at state sn and that it still holds after the occurrence of
event E ∈ Evp and (possibly) of event F ∈ F at state sv (v ≥ n), and that none of the
events in J has happened. Let SEvp1 and SF1 be modified event sequences obtained by
respectively canceling E and F from SEvp and SF1 whenever they occur. Given $1 =

SEvp1 : τ ::: SF1 :::: J J we have that for every state sw with (w ≥ v) $ holds iff $1

holds.

Whenever an Evolutionary A-ILTL expression is either violated or broken, a repair
can be attempted with the aim of recovering the agent’s state.

Definition 18. An evolutionary LTL expression with repair $r is of the form:

$|η1||η2

where $ is an Evolutionary LTL Expression adopted in language L, and η1, η2 are
atoms of L. η1 will be executed (according to L’s procedural semantics) whenever $ is
violated, and η2 will be executed whenever $ is broken.

4 Related Work

We may easily notice the similarity between Evolutionary A-ILTL Expressions and
event-calculus formulations. The Event Calculus has been proposed by Kowalski and
Sergot [45] as a system for reasoning about time and actions in the framework of Logic
Programming. The essential idea is to have terms, called fluents, which are names of
time-dependent relations. Kowalski and Sergot write holds(r(x, y), t) which is under-
stood as “fluent r(x, y) is true at time t”. Take for instance the default inertia law, stating
when fluent f holds, formulated in the event calculus as follows:

holds(f, t) ← happens(e), initiates(e, f), date(e, ts),
ts < t, not clipped(ts, f, t)

The analogy consists in the fact that, in the sample A-ILTL expression of previous sec-
tion, past event checkupP (Car) : t1 initiates a fluent which is actually an interval A-
ILTL expression, namelyGt1,t1+6monthswork ok(Car), which would be “clipped” by
accident(Car), where a fluent which is clipped does not hold any longer. The Evolu-
tionary A-ILTL Expression contains an element which constitutes an addition w.r.t. the
event calculus formulation: in fact, long trip+(Car) represents a sequence of events
that is expected, but by which the fluent should not be clipped if everything works as
expected. Moreover, in Evolutionary A-ILTL Expressions one can specify a fluent to
initiate and keep holding or terminate according not just to single events, but to com-
plex event sequences of unlimited length.

Static verification of agent programs and systems (i.e., verification performed prior
to agent activation) can be accomplished through model-checking techniques [3], ab-
stract interpretation [4] (not commented here) or theorem proving.

About theorem proving, in [46] for instance, concerning the agent-oriented language
GOAL, a temporal logic is defined to prove properties of GOAL agents. In general,



given a logical specification of an agent and its semantics, properties of that agent can
be proved as theorems.

Model-checking is a method for algorithmically checking whether a program (in-
tended as the “model” of a system) satisfies a specification, usually expressed by means
of some kind of temporal logic. In mathematical terms, the method tries to decide if
model M (expressed in some formal language), with initial state s, models a property
p. Otherwise, a counterexample is usually generated. This ia done by exploring all pos-
sible state that given system can possibly reach. Model-checking techniques [3] have
been originally adopted for testing hardware devices, their application to software sys-
tems and protocols is constantly growing [47,48], and there have been a number of
attempts to overcome some known limitations of this approach.

The application of such techniques to the verification of agents is still limited by two
fundamental problems. The first problem arises from the marked differences between
the languages used for the definition of agents and those needed by verifiers (usually
ad-hoc, tool-specific languages). Indeed, to apply static verification, currently an agent
has to be remodeled in another language: this task is usually performed manually, thus it
requires an advanced expertise and gives no guarantee on the correctness and coherence
of the new model. In many cases (e.g., [48,49]) current research in this field is still
focused on the problem of defining a suitable language that can be used to easily and/or
automatically reformulate an agent in order to verify it through general model-checking
algorithms. For example, [50] describes a technique to model-check agents defined by
means of a subset of the AgentSpeak language, which can be automatically translated
into PROMELA and Java and then verified by the model-checkers SPIN [47] and Java
PathFinder [51], respectively, against a set of constraints which, in turn, are translated
into LTL from a source language which is a simplified version of the BDI logic. [52]
describes an approach that exploits bounded symbolic model-checking, in particular
the tool MCMAS, to check agents and MAS (Multi-Agent Systems) against formulas
expressed in the CTLK temporal logic.

The second obstacle is represented by the dynamic nature of agents, which are able
to learn and self-modify over their life cycle, and by the extreme variability of the en-
vironment in which agents move. These aspects make it difficult to model agents via
finite-state languages, which are typical of many model-checkers, and dramatically in-
crease the resources (time, space) required for their verification (state explosion). This
can be seen as a motivation for our approach, which defers at least part of the verifica-
tion activity (namely, the part more dependent upon agent evolution) to run-time.

The literature reports fully-implemented promising verification frameworks (e.g.,
[50,52,53]), of which SCIFF [53,54,55] is not based upon model-checking. SCIFF is
an abductive proof procedure inspired by the IFF proof procedure [56] by Fung and
Kowalski. Unlike original IFF, SCIFF focusses on the externally observable agent be-
havior. so as to focalize on the interaction. Agents could be computational entities,
reactive systems, peers in a distributed computer system, even human actors. This kind
of detachment from specific features of an observed system is called “social approach”
to agent interaction. Given a narrative of such an observed behavior (called a “history”)
the purpose of the SCIFF framework is (i) to define declaratively whether such a history



is “admissible”, i.e., compliant to a specification, and (ii) to provide a computational
proof-procedure to decide operationally about its compliance.

In the MAS domain, the SCIFF language has been used to define agent interaction
protocols and, more generally, to describe the generation of expectations in the form of
events, or “social goals”, that express the social aim or outcome of some agent inter-
action. SCIFF allows one to model dynamically upcoming events, and specify positive
and negative expectations, and the concepts of fulfilment and violation of expectations.
SCIFF has a declarative semantics given in terms of Abductive Logic Programming,
and is fully implemented. The implementation enjoys important properties, namely ter-
mination, soundness, and completeness w.r.t. the declarative semantics.

Reactive Event Calculus (REC) stems from SCIFF [57,58,59] and exploits the idea
that, every time a new event (or set of events) is delivered to an agent, it must react by ex-
tending the narrative and by consequently extending and revising previously computed
results. REC axiomatization can be based on Abductive Logic Programming (ALP), or
alternatively on a lightweight form of Cached Event Calculus (CEC) [60], that exploits
assert and retract predicates to cache and revise the maximal validity intervals of flu-
ents. This latter semantics is suitable to deal with application domains where events
are processed following the order in which they have been generated, like in business
processes and (web) services.

Another example of social approach is the one based on commitments, firstly intro-
duced by Singh in [61]. Commitments result from communicative actions, and capture
the mutual obligations established between the interacting agents during the execution.
[62] represents commitments as properties in the event calculus, and develop a scheme
where to model the creation and manipulation of commitments as a result of performing
actions.

All the above-mentioned approaches have relationships with the one presented in
this paper. For instance, positive and negative expectations in SCIFF are similar to the
F s and Js in Evolutionary A-ILTL Expressions. However, our approach has its specific
original features. The main one is that it is aimed at a single agent dynamically verifying
itself under various respects, and not to the verification of interactions. Our focus is
not on observable behavior to be confronted with expectations: rather, A-ILTL rules
are aimed at expressing inherent agent properties. We drew inspiration from Cohen
and Levesque work on rational agency (see, e.g., [63,64]). Let us consider one of their
examples from [64], namely “I always want more money than I have”: the following is
a variation expressed as an Evolutionary A-ILTL Expression, where one always wants
within one month ten percent more money than (s)he has at present. have moneyP (S) :
T is a past event that represents the last agent’s reminiscence about how much money
(s)he has (in fact, when time-stamp of a past event is a variable, the last version is
obtained). The expression states that by time T1, which is T plus one month, (s)he
intends to own a sum S1 greater by ten percent than S.

have moneyP (S ) :T :
EVENTUALLY (T1 ) have money(S1 ) :: S1 = S + 10%S, T1 = T + 1month

In other approaches, for instance SCIFF or Reactive Event Calculus, one might to
some extent specify properties similar to A-ILTL ones: this however would be easily



done only within agents defined in the related formalisms (respectively, abductive logic
programming and event-calculus), and mechanisms for dynamically checking proper-
ties remain to be defined: in fact, these approaches can be adapted to dynamic checking
when performed by a third party, where they have not been devised for self-checking.
Moreover, the problem of how to apply these methodologies within other agent-oriented
languages and frameworks has still not been considered. Our approach introduces a flex-
ibility with respect to a pre-defined narrative, and the concept of repair and improvement
is novel.

The approach of [6] introduces an active logic based on time, where they explicitly
have inference rules such as:

i : now(i)

i+ 1 : now(i + 1 )
to denote that the concept of “present time” evolves as time passes. They also have
rules for ‘timed’ modus ponens (where the conclusion becomes true at next instant)
and a frame axiom. Our A-ILTL logic has a primitive ‘current state’ operator that is
represented as NOW (t) in the practical syntax, and can occur in A-ILTL rules and
expressions, where it is re-evaluated with the whole rule/expression at given frequency.

In addition to ‘base level’ systems providing fast reaction, in [6] a component sup-
porting deliberation and re-consideration, capable of symbolic reasoning and meta-
reasoning for self-monitoring and self-correction of the overall system, is advocated.
They argue that a flexible, non-brittle system can be achieved by adding such a layer,
where this oversight module executes a “Meta-Cognitive loop” (MCL). Active logic is
in their view a suitable tool for designing MCL, that however should be kept simple
and fast. In a way, our A-ILTL rules and expressions may be seen as composing a sort
of MCL, where A-ILTL can be seen as the underlying active logic. Then, our approach
(especially when applied in the DALI context) could be seen to some extent as an in-
stance of theirs, with some differences. On the one hand, at the base level they envisage
not necessarily symbolic reasoning modules, but also other kinds of non-symbolic or
purely reactive systems. This of course is a design choice which is by no means in-
compatible with A-ILTL. On the other hand, reasoning in time is possible in DALI also
at the base level. In fact, their example of making a date and meeting somewhere at a
certain time might be fully represented by DALI “internal events”, which provide rules
to be re-evaluated at a certain frequency (‘Is it time to go?’) with a reaction that occurs
when rule conditions are fulfilled (‘If so, then go!’).

5 A Complete Example

In this section we propose and discuss a small but complete example of use of the
various features that we have introduced so far for agent’s dynamic self-checking. We
follow DALI syntax, that we have partly introduced before and will further explain here.
DALI syntax extends prolog syntax, that we suppose to be known to the reader (cf. e.g.,
[65,41]. The example concerns in particular an agent managing a bank cash machine.

The machine is supposed to be situated in a room. Customers enter and exit the
room via a door. A sensor on the door delivers to the agent the two (external) events



enter customerE and exit customerE when a customer respectively enters or exits
the room. Each external event is managed by a reactive rule, where the traditional pro-
log connective :- is replaced by new connective :>. This new connective indicates that
whenever the event in the head is received (we can also say “perceived”) by the agent,
then the body is executed. The agent reacts to a customer entering or exiting by switch-
ing on and off the light. Atoms with postfix A indicate in fact actions. The two actions
switch on lightA and switch off lightA for simplicity are supposed here non to have
preconditions and to be always successful. After reaction, each external event is auto-
matically recorded as a past event, time-stamped with the time of perception/reaction.
So, e.g., past event enter customerP : T can be found in the agent’s knowledge base
whenever external event enter customerE has been perceived at time T (by conven-
tion, we take time of perception to coincide with time of reaction). Whenever such
an event is perceived several times, time-stamp T refers to the last perception (though
there is a management of versions, as illustrated in [9]). Whenever a customer enters the
room, the agent expects the customer to exit within a reasonable time, say 5 minutes.
Otherwise, something irregular may have happened, so it is better to alert a human oper-
ator. All the above is formalized via the following program fragment. The two reactive
rules manage external events. The subsequent A-ILTL rule states that, if a customer
does not follow the expected behavior, then (as a repair for the violation) the action
alert operatorA is executed. Precisely, the rule context (after the ::) specifies that, if a
customer entered at time T (as recorded by past event enter customerP : T ), the limit
time is set to T1 = T + 5m . At most by this time, the user must EVENTUALLY have
gone out: i.e., past event exit customerP : T2 must be found in the agent’s knowledge
base, recording the user’s action of exiting at a certain time in given interval (in fact,
in the context it is stated that T2 > T ,T2 ≤ T1 ). The frequency at which this rule is
checked is explicitly set at 30 seconds.

enter customerE :> switch on lightA.
exit customerE :> switch off lightA.
EVENTUALLY (T ,T1 , 30s) exit customerP : T2 , ::

enter customerP : T ,T1 = T + 5m ,
T2 > T ,T2 ≤ T1
÷ alert operatorA.

When in the room, a customer will presumably attempt to withdraw some money
from her/his account. The customer inserting her/his data in the machine will result in
delivering to the agent an external event such as withdraw(Customer ,Sum)E , where
Customer will be instantiated to the customer’s code, and Sum to the amount of money
that (s)he wants. The reactive rule reported below does the following: (i) finds the ac-
count number Account related to the customer (fails if it does not exist); (ii) checks
whether the customer is trustworthy (fails if withdrawal is for some security reason pre-
vented); (iii) checks whether the amount is available on the account, and is within the
daily and weakly maximum that can be provided; (iv) updates the customer account
by subtracting the sum; (v) performs an action that will actually result in providing the
money. Notice that checking trust is intended to be an action.



withdraw(Customer ,Sum)E :>
find account(Customer ,Account),
check trustA(Customer),
check sum(Sum),
update(Account ,Sum),
give moneyA(Account ,Sum)

The two actions occurring in the above reactive rule have preconditions. Precon-
ditions to actions are expressed via rules where the new connective :< appears. This
means that the action in the head is enabled (via this rule) to be performed only if
the body succeeds. Actually performing an action then implies the agent being con-
nected to its environment by practical actuator devices. The atom in brackets which
(optionally) occurs in such a rule indicates an alternative action to be performed if the
body fails. The first rule states that money can be provided to the customer only if the
corresponding amount is actually present in the cash machine (the available balance
B, that for allowing the withdrawal must be greater than or equal to required sum, is
recorded in the agent knowledge base by fact machine content(B)). If not, backup
action PrintErrorMsgIWA will print an error message on the screen of the cash ma-
chine indicating that withdrawal is at the moment impossible. Before enabling actual
withdrawal, balanceB must be updated (by update machine content(B ,B1 )) by sub-
tracting Sum . The second rule takes trust checking seriously: in fact, if the level of trust
associated to a customer is less than a threshold, then the agent alerts a human opera-
tor. In practice, if trust is sufficiently high then action check trustA(Customer) simply
succeeds, otherwise the backup action will be executed.

give moneyA(Sum) :<
machine content(B),B ≥ Sum,
update machine content(B ,B1 ),B1 = B − Sum
{PrintErrorMsgIWA}.

check trustA(Customer) :<
trust(Customer ,L),L > Threshold
{Alert OperatorA}.

Finally, the agent is responsible of providing the cash machine with money
to be given to customers. The agent fills the machine with a standard quantity
Q of money. This quantity is recorded in the agent’s knowledge base by fact
standard quantity(Q). The filling is performed in practice by an action such as
fill machineA(Q), executed at time T . Each action, similarly to external events, af-
ter execution is recorded in the agent’s knowledge base as a past event: in this case, a
past event will be added of the form fill machineP (Q) : T . After filling the machine,
the agent expects the money to be sufficient for some time, say 8 hours.

The following Evolutionary A-ILTL expression states that, after the action of filling
the machine, for eight hours the machine should not get empty. Precisely, the time
interval considered in the expression is [T, T1] where, as specified in the evaluation
context of the rule, T1 = T+8hours. Within this interval, the machine content (recorded



in the agent’s knowledge base by fact (machine content(B)) must be ALWAYS , i.e.,
in all time instants of the interval, greater than a minimum amount. This obviously also
in case (as stated after the :::) of repeated withdrawals (whatever their number) though,
as seen before, each withdrawal makes the machine content B decrease. In case of
violation, i.e., in case the machine gets empty or almost (content less than a minimum
amount), the agent (as stated after the |) fills again the machine with standard quantity
Q of money. This again by means of action fill machineA(Q), that will in turn become
a past event with a new time-stamp corresponding to its completion. The agent however
will also reconsider the standard quantity, as Q has proven to be insufficient, possibly
updating it to a (presumably larger) new amount Q1. All this unless (as specified after
the ::::) an exceptional condition, in this case robbery, occurs. If so, the repair action
executed is (as specified after the ||) to call the police. Notice that an A-ILTL expression
is checked at a certain frequency (in this case the default one). So, it can be the case that
the condition is violated but the violation has not been detected yet. This case however
is managed by rules coping with withdrawal: in particular, if money cannot be provided
because it is insufficient, as seen before an error message will be displayed.

fill machineP (Q) :T : ALWAYS (T, T1)
(machine content(B),B > minimum) :: T1 = T + 8hours

::: withdraw(A,S )A
+ |

standard quantity(Q),fill machineA(Q),
reconsider quantity(Q ,Q1 )

:::: robbery || call policeA.

6 Concluding Remarks

In this paper, we have presented a comprehensive framework for defining agent prop-
erties and run-time self-checking of such properties. Our methodology is intended as
complementary to static verification techniques. To this aim, we have introduced A-
ILTL rules and expressions, that allow one to define a number of useful properties that
the evolution of an agent should fulfil, whatever the sequence of in-coming events. We
have provided a complete semantic framework, adaptable to several practical settings.
The approach is significantly different from related work, to which it could to some
extent be usefully integrated. The approach has been prototypically implemented and
experimented [43] in the context of the DALI language.
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